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SUMMARY

This paper summarizes the results from a special session dedicated to understanding the �uid dynamics
of the 8:1 thermally driven cavity which was held at the First MIT Conference on Computational
Fluid and Solid Dynamics in June, 2001. The primary objectives for the special session were to:
(1) determine the most accurate estimate of the critical Rayleigh number above which the �ow is
unsteady, (2) identify the correct, i.e. best time-dependent benchmark solution for the 8:1 di�erentially
heated cavity at particular values of the Rayleigh and Prandtl numbers, and (3) identify those methods
that can reliably provide these results. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION AND BACKGROUND

Modern thermal design practices often rely on a ‘predictive’ simulation capability—although
predictability is rarely quanti�ed and often di�cult to con�dently achieve in practice. Nev-
ertheless, the computational predictability of laminar natural convection in enclosures is a
signi�cant issue for many industrial thermal design problems. One example of this is the
design-for-mitigation of optical distortion due to buoyancy-driven �ow in large-scale laser
systems.
In many instances the sensitivity of buoyancy-driven enclosure �ows can be linked to the

presence of multiple bifurcation points that yield laminar thermal convective processes which
can transit from steady to various modes of unsteady �ow [1]. This behaviour is brought to
light by a problem as ‘simple’ as a di�erentially heated tall rectangular cavity (8:1 height=width
aspect ratio) �lled with a Boussinesq �uid with Pr=0:71—which partially de�nes the focus of
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this work. For our purposes, the di�erentially heated cavity provides a virtual �uid dynamics
laboratory as pointed out by Le Qu�er�e [2]:

‘In conclusion let us emphasize that the di�erentially heated cavity, in addition to
its relevance as a model of convective heat transfer, turns out to be a real �uid
mechanics laboratory in itself. The spatial structure of the �ow is made of vertical
and horizontal boundary layers, of corner structures, of a strati�ed core... which
depend very sensitively on the aspect ratio, Prandtl number and thermal boundary
conditions (even a �y-wheel structure can be found at low Pr). All these features co-
operate to give rise to very complex time behaviours resulting from several instability
mechanisms, travelling waves in the vertical boundary layers, thermal instabilities
along the horizontal walls in particular, which can interact strongly with internal
wave dynamics.’

The �ow �elds, and associated eigenmodes, in the 8:1 cavity exhibit two types of sym-
metry that are central to understanding the overall behaviour of the enclosure �ow and its
associated stability with respect to the three primary problem parameters, Rayleigh number
Ra, Prandtl number Pr and cavity aspect ratio A. For the 8:1 di�erentially heated cavity
with 06x6W , 06y6H , centre at (x; y)=(W=2; H=2), and vertical walls with prescribed
temperatures at �(0; y)= 1

2 and �(W;y)= − 1
2 , the Boussinesq form of the incompressible

Navier–Stokes equations admit solutions with the so-called centro-symmetry property—see
Reference [3], or more recently, Reference [4].
The centro-symmetry property consists of cyclic-symmetry of order 2 about the cavity centre

in the primary �ow �elds where cyclic-symmetry is de�ned by a single rotation through an
angle �=2�=n with n de�ning the order of the cyclic-symmetry. The cyclic-symmetry (�=�)
inherent in the observed centro-symmetry for the 8:1 cavity consists of ‘skew-symmetry’ in
the velocity and non-dimensional temperature, and ‘symmetry’ in the pressure �eld, i.e.

u(W − x; H − y)=−u(x; y)

v(W − x; H − y)=−v(x; y) (1)

�(W − x; H − y)=−�(x; y)

P(W − x; H − y)=P(x; y)
(2)

where the hydrostatic part of the pressure, P, is assumed to be zero at the cavity centre. In both
cases, this is a cyclic-symmetry of order 2. Here, and throughout this journal issue dedicated
to the 8:1 cavity, ‘skew-symmetry’ for the di�erentially heated cavity is used to indicate
that there is skew-symmetry in the velocity components and non-dimensional temperature.
The centro-symmetry property implies a concomitant symmetry in the pressure. Again, all
symmetries are with respect to the centre of the cavity. In the cavity problem in this and the
other papers in this special issue, it is worth noting that the temperature boundary conditions
are skew-symmetric.
The eigenmodes for the di�erentially heated cavity may either share the centro-symmetry

property or have the ‘opposite’ symmetry wherein the velocity and scaled temperature are
symmetric but the pressure �eld is skew-symmetric with respect to the cavity centre (see
Reference [4]). In this case, the �ow �elds still exhibit cyclic-symmetry of order 2 about the
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cavity centre. Eigenmodes that exhibit symmetry in the velocity and scaled temperature with
skew-symmetry in the pressure �eld are referred to as ‘centro-symmetry-breaking’ or simply
‘symmetry-breaking’ eigenmodes.
In the 8:1 cavity, the spectrum of the Jacobian of the Navier–Stokes equations about a

steady-state solution is characterized by an in�nite number of eigenvalues which are either
real or occur in complex conjugate pairs. For increasing Rayleigh number (Ra), some of
the eigenvalue pairs cross the imaginary axis indicating bifurcation points (i.e. steady �ow
becomes unsteady, �a la Hopf). Preliminary computations in the air-�lled 8:1 cavity (Xin and
Le Qu�er�e [5]) indicated that two pairs of complex conjugate eigenvalues cross the imaginary
axis in the vicinity of Ra=3:1×105. One of the corresponding eigenmodes shares the centro-
symmetry property of the base �ow, while the other, the �rst unstable mode, in fact, does
not.
The presence of two types of unstable eigenmodes suggests that there may be signi�cant

sensitivity to the choice of initial conditions. That is, the choice of skew-symmetric conditions
may promote the saturation of the second unstable mode which exhibits skew-symmetry in
the velocities and non-dimensional temperature. In contrast, a random perturbation of the
temperature �eld around the mean may promote the growth of the �rst unstable mode, i.e.
the symmetry-breaking mode, at least for a �nite period of time. Due, in part, to the presence
of multiple unstable modes with a relatively small separation in Ra, the ostensibly simple
di�erentially heated cavity problem is not as simple as one might initially believe.
Additionally, the simulation of this buoyancy-driven �ow is remarkably susceptible to the

deleterious e�ects of numerical damping and=or dispersion introduced by commonly used CFD
‘tricks-of-the-trade’, thus making it surprisingly challenging. For example, preliminary numer-
ical tests demonstrated that the damping=dispersion artifacts from the simplest time-marching
advection treatment with an added balancing tensor di�usivity (see for example, Reference
[6]) can destroy the delicate thermal convective processes present in this enclosure when close
to the critical Rayleigh number. In fact, coarse-grid computations can exhibit steady-state so-
lutions even though the true solution is unsteady—requiring higher resolution grids than may
be initially thought. For another example, the very instability under investigation turns out
to be a boundary layer instability in the �ow direction, thus rendering suspicious any addi-
tional streamline upwinding—ad hoc or otherwise. Even when dissipation and dispersion have
seemingly been minimized, computational experiments have shown that the amplitude of the
periodic temperature oscillations can vary by as much as an order of magnitude depending on
the speci�cs of the spatial discretization, grid resolution, stopping criteria for iterative solvers,
and even the use of advective vs conservative forms of the governing equations.
Ultimately the sensitivity of this class of �ow problem to initial and boundary conditions,

formulation details, and numerical procedures raises at least the following questions: What is
the critical Rayleigh number, above which the �ow will be unsteady, for the 8:1 enclosure?
What is the behaviour of the �ow �eld at Rayleigh numbers slightly above critical? What is
the role of linear stability analyses in predicting unstable modes? Can non-linear dynamics
provide any insight into the behaviour of the 8:1 cavity? What can be said about the rela-
tionship between (unstable) steady-state solutions and time-averaged periodic solutions? What
is the best formulation and associated numerical procedure to use in order to ameliorate the
sensitivities observed in practice and raise the level of accurate predictability? Which ‘other’
numerical methods, i.e. discretization, time integrator, stabilization, preconditioned iterative
technique and ‘tricks of the trade’ are at least viable—and which are not?
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In an attempt to answer these questions, a special session was organized for the First
MIT Conference on Computational Fluid and Solid Mechanics [7]. The session organizers
solicited contributed solutions to the 8:1 di�erentially-heated cavity problem for near-critical
Rayleigh numbers with the goal of attracting practitioners of �nite di�erence, �nite volume,
�nite element and spectral methods to this seemingly simple 2-D problem. The application of
commercial CFD codes was also highly encouraged—and still is.
In the subsequent sections of this paper, the problem de�nition for the 8:1 di�erentially

heated cavity is presented along with a summary of the compulsory data requested by the
session organizers. Following the problem de�nition is an overview of the solution methods
that were applied to the 8:1 cavity problem and their corresponding contributed solutions.
Finally, the contributed compulsory data is compared using a series of metrics to indicate the
overall accuracy and performance of the methods and codes applied to the 8:1 cavity.

2. PROBLEM DEFINITION

The buoyancy driven enclosure �ow problem is based upon the geometry shown in
Figure 1 where W is the width and H the height of the enclosure. The enclosure aspect
ratio is A=H=W and takes on the value A=8. The gravity vector is directed in the negative

Figure 1. Di�erentially heated enclosure with 8:1 aspect ratio (not to scale),
insulated horizontal walls and constant temperature vertical walls.
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y-coordinate direction, and the Boussinesq approximation is assumed to be valid, i.e. only
small temperature excursions from the mean temperature are admitted.
The non-dimensional governing equations for the time-dependent thermal convection prob-

lem are the incompressible Navier–Stokes equations, conservation of mass and the energy
equation written here in terms of temperature:

@u
@t
+ u · ∇u=−∇P +

√
Pr
Ra

∇2u+ ĵ� (3)

∇ · u=0 (4)

and
@�
@t
+ u · ∇�=

1√
RaPr

∇2� (5)

where, u=(u; v), P and � are the velocity, the deviation from hydrostatic pressure, and temper-
ature, respectively, and ĵ is the unit vector in the y direction. These non-dimensional equations
were obtained using the characteristic length W , buoyancy velocity scale U=

√
g�W�T , time

scale �=W=U and pressure P̃=�U 2. Here, � is the mass density, g the gravitational acceler-
ation, and � the coe�cient of thermal expansion. The non-dimensional temperature is de�ned
in terms of the wall temperature di�erence and a reference temperature as

�=
T − Tr
Th − Tc

(6)

where

Tr =
Th + Tc
2

(7)

and Th is the prescribed temperature of the hot wall, and Tc is that of the cold wall.
The Rayleigh number is

Ra=
g��TW 3

��
(8)

and the Prandtl number is

Pr=�=� (9)

where � is the thermal di�usivity, � the kinematic viscosity, and �T=Th−Tc the temperature
di�erence between the hot and cold walls. For all contributed calculations we requested that
Pr=0:71, and Ra=3:4×105. Additional information relevant to this problem may be found
in References [2, 8–10].

2.1. Boundary conditions

The enclosure boundary conditions are simple and consist of no-slip and no-penetration walls,
i.e. u=v=0 on all four walls. The thermal boundary conditions on the left and right walls
are

�|x=0=+1
2

�|x=W =− 1
2

(10)
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and along the bottom and top walls,
@�
@y

∣∣∣∣
y=0

=0

@�
@y

∣∣∣∣
y=H

=0

(11)

2.2. Initial conditions

One set of initial conditions that may be used for a transient simulation consist of an isothermal
�uid initially at rest, i.e.

u(x; 0)=0 (12)

and
�(x; 0)=0 (13)

which are compatible with the skew-symmetric solution.
In the original call for contributed solutions, the use of alternative initial conditions was

encouraged as a means to test the sensitivity of the problem to them. For example, a random
perturbation of the initial constant temperature was also an acceptable initial condition—as
were any others that were not skew-symmetric.

3. COMPULSORY AND OPTIONAL RESULTS

This section outlines the quantities of primary interest that were considered compulsory for
the benchmark problem, and suggests some additional quantities that were not required, but
that contributors were encouraged to report. The compulsory results for the special session
were to be presented in three tables containing point, wall, and global time history and time-
averaged data, and two plots showing the temperature time history and a skewness metric to
be de�ned later. For the MIT special session, we encouraged the submission of results from
steady state, transient, and stability computations and the use of both research and commercial
�ow solvers.
The compulsory results for the benchmark problem were to be prepared for Pr=0:71 and

Ra=3:4×105. There was no restriction on the submission of results for additional Rayleigh
numbers and we encouraged participants to include their best prediction of the critical Rayleigh
number, Racrit, which marks the transition from steady to time-periodic behaviour. The initial
call for contributed solutions gave our estimate of the critical Rayleigh number at that time
which we believed to be Racrit≈3:1×105.
The compulsory data for the transient and steady-state computations were categorized ac-

cording to the data type, i.e. point, wall and global data. For all time-dependent computations,
the average value and the peak-to-valley oscillation amplitude were to be tabulated, along with
the period of oscillation for all compulsory data.
The computation of an average value was based upon achieving a statistically stationary

state where the period and amplitude were essentially constant. For a generic variable, 	,
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Table I. Non-dimensional co-ordinates of time-history points.

Point x-Co-ordinate y-Co-ordinate

1 0.1810 7.3700
2 0.8190 0.6300
3 0.1810 0.6300
4 0.8190 7.3700
5 0.1810 4.0000

e.g. 	=u; v; �; : : : ; the average was to be computed as

�	=
1
T

∫ t+T

t
	(x; t) dt (14)

where T represents the period of time for which the average was computed. The oscillatory
component was to be computed as

	′(x; t)=	(x; t)− �	 (15)

The average was requested for one or more complete periods where the amplitude and period
were essentially constant, i.e. after the startup transients completed. Note that for non-linear
oscillations, the mean amplitude is generally di�erent from the average of the peak and valley
extrema.

3.1. Grid resolution guidelines

There were no strict requirements on grid resolution, however, all participants were asked to
provide results that they believed to be su�ciently accurate. For the purposes of grid gener-
ation, contributors were directed to Reference [3] for guidance on the vertical-wall boundary
layer thickness. We suggested using graded meshes with approximately a 1:5 x-to-y ratio of
grid points starting with a coarse grid of 21×101 and increasing the grid resolution by grid
doubling, e.g. a medium grid of 41×201 and a �ne grid of 81×401. Uniform meshes will,
of course, require more nodes.

3.2. Point data

Time-history data was requested at the time-history points shown in Figure 1 and identi�ed in
Table I. The compulsory point data consisted of velocity (u; v), temperature �, stream function
 , and vorticity ! at time-history point-1. A plot of the oscillatory variation in temperature
at point-1, �1, was to accompany the tabulated results.
For our purposes, the vorticity was de�ned as

!=
@v
@x

− @u
@y

(16)

and the stream function as

u=
@ 
@y

; v= − @ 
@x

(17)

with  =0 on the walls.
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As a part of the compulsory data, we also requested that a skewness metric, 
12, for the
temperature �eld be reported. The skewness metric was de�ned using time-history points 1
and 2 as


12=�1 + �2 (18)

and provided a measure of the loss of skew-symmetry in the temperature �eld. For �ow
solutions with the centro-symmetry property, i.e. with a skew-symmetric non-dimensional
temperature �eld, 
12 will be machine zero. Conversely, �ow �elds that are symmetry break-
ing will exhibit a �nite skewness. A plot showing the skewness metric was to be included
only if the skewness metric was found to be non-zero.
In addition to the skewness metric, 
12, three pressure di�erences �P14, �P51 and �P35

were compulsory. The required pressure di�erences were de�ned as

�Pij=Pi − Pj (19)

where i and j indicate the time-history points in Figure 1 and Table I used to compute the
pressure di�erence.

3.3. Wall data

The wall Nusselt numbers were also compulsory and were requested at each wall as

Nu(t)|x=0;W = 1
H

∫ H

0

∣∣∣∣@�@x
∣∣∣∣
x=0;W

dy (20)

3.4. Global data

An average velocity and vorticity metric were also requested as a part of the compulsory
data. The average velocity metric was de�ned as

û(t)=

√
1
2A

∫
A

u · u dA; (21)

where A is the area of the enclosure, A=W ×H . Similarly, the measure of the average
vorticity was de�ned as

!̂(t)=

√
1
2A

∫
A

!2 dA (22)

3.5. Methodology

A summary of the numerical method used to solve the thermal cavity problem was compulsory
and was intended to provide a concise description of the following items:

• Spatial discretization method and a description of the grids used.
• Solution procedure, e.g. time-integration procedure, linear solvers, etc.
• Stopping criteria used for all iterative procedures.
• Description of the advective treatment—including any use of arti�cial viscosity, limiters,
and blended �rst-/second-order methods.

• Description of any ‘stabilizing’ terms in the formulation or solution methodology, e.g.,
Galerkin least-squares (GLS) stabilization.
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• An estimate of the order of accuracy of the method and, if possible, the accuracy of the
submitted results.

• Any new or unique features of the method used to solve the di�erentially heated cavity
problem.

3.6. Computational resources

A summary of the computational resources was also compulsory and intended to provide a
concise description of the following items:

• Machine, e.g. Compaq, DEC, SGI, etc.,
• Clock rate in MegaHertz (MHz),
• Total memory MegaBytes (MBytes),
• peak FLOP (�oating point operation) rate (MFLOPs) and=or the specFP95 rating—see:
http:==www.spec.org=osg=cpu95=,

• Number of processors used and the number of grid points per processor (degree of
granularity) for parallel computations.

• CPU time (or wall clock time for parallel) used per grid point per time step (micro-
seconds=point=step), and

• Memory used (per processor in parallel) (MBytes).

4. METHODS SUMMARY

This section summarizes the methods applied by the contributors to the 8:1 di�erentially heated
cavity. There were 23 contributors to the special session at the MIT meeting who provided a
total of 32 sets of solution data. Most of the contributors provided results computed on two
or more grids. A complete list of the contributors may be found in the appendix—a subset
of these contributions may be found in the papers included in this special issue.
The solution methods applied to the 8:1 cavity problem are presented in Table II and were

predominantly �nite element based with 22 of the 32 contributed solutions using some variant
of the �nite element method (FEM). There were also three spectral solutions (Nos. 18, 26 and
31), four �nite-volume (FVM) (Nos. 5, 7, 8 and 27), two �nite-di�erence solutions (FDM)
(Nos. 16 and 25), and one based on Richardson extrapolation (No. 2). For a description of
the �nite element ‘jargon’, e.g. Q2−Q1 element, refer to Reference [11].
In Table II, the mesh resolution is reported in terms of grid-points (Nx×Ny) with the

exception of the methods used by Paolucci (No. 18), Parolini (No. 26) and Le Qu�er�e (No.
31). For Paolucci, in which a new set of divergence-free basis functions was used, the mesh
resolution indicates the number of modes used in the x- and y-coordinate directions. For
Parolini and Le Qu�er�e, the mesh resolution indicates the number of modes used to represent
each of the velocity and temperature �elds. In subsequent comparisons, the total number of
modes were counted as degrees of freedom in order to compute the computational cost on a
per mode basis for each of the spectral contributions. The contributions by Bruneau (No. 16)
and Johnston (No. 25) both used grids with uniform mesh spacing.
The majority of the contributed solutions were based on time-marching methods, and a

majority of these solutions were obtained using primitive variables and segregated solu-
tion methods. Of the time-accurate, primitive variable solution methods, a total of 18 were
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obtained using segregated methods, i.e. primarily SIMPLE or projection methods. Only seven
contributed solutions were based on fully coupled primitive variable methods. The methods
used by Christon (No. 15), Christopher (No. 20), Gresho and Sutton (Nos. 22–24), and
Westerberg (No. 6) used second-order (trapezoidal rule) time-step control based on accuracy.
The contribution by Salinger et al. (No. 32), applied a Galerkin=least-squares �nite el-

ement formulation with an inexact Newton–Krylov steady-state solver to estimate the �rst
Hopf bifurcation. Similarly, Xin and Le Qu�er�e, used a Chebyshev pseudo-spectral discretiza-
tion in combination with a Newton Arnoldi–Krylov algorithm to map out four unstable
branches in the 8:1 cavity for 3:0×1056Ra65:0×105. Parolini and Auteri used a Galerkin–
Legendre second-order projection method to bound the �rst Hopf bifurcation in the range
of 3:075×1056Racrit63:125×105. Bruneau and Saad also provided an estimate of Racrit by
computing the �rst Lyapunov exponent for the linearized thermal convection system.
A total of �ve commercial �ow solvers were applied to this problem: ADINA (No. 28),

FIDAP (Nos. 22–24), Fluent (No. 8), LS-DYNA (Nos. 13–15), and PHOENICS (No. 20).
Although not included in the subsequent comparison of solutions, Ambrosini et al. (No. 7)
reported obtaining steady-state results using Fluent version 5.3 on the 41×201 grid. Although
Christopher (No. 20) provided results computed using Nachos [12], he also reported an attempt
to use PHOENICS v. 1.4 which failed due to the use of single precision variables and extreme
mesh resolution required to obtain a time-dependent solution.

5. COMPARISON OF SOLUTIONS

This section presents a brief summary and comparison of the contributed solution data. For the
purposes of comparison, only the contributed data computed with the most re�ned grid (and
time-step) presented in Table II are used as this represents the most accurate results provided
by each contributor at the MIT meeting. Please note that some authors have chosen to ‘re�ne’
their results in the papers included in this special issue relative to the results compiled at the
MIT meeting which we present below.

5.1. Compulsory data

The compulsory data collected from all the contributors to the MIT special session are re-
ported in Tables III and IV‡. In Table III, �u1, ��1, Nu and �P14 are the time-averaged
velocity, temperature, Nusselt number and pressure di�erence. The corresponding �uctuating
velocity, temperature, Nusselt number and pressure di�erence are u′1, �

′
1, Nu′ and �P′

14, respec-
tively. The period, ��, is the period associated with the temperature oscillation at time-history
point-1. The number of time-steps per oscillation period are presented in Table V. Since the
compulsory pressure di�erences, �P51 and �P35, were not reported consistently for the MIT
meeting, they have been omitted here.
The compulsory stream function, � and  ′, vorticity, �! and !′ and the global velocity

and vorticity metrics ( �̂u; û′, and �̂!, !̂′, respectively) are reported in Table IV. Unfortunately,

‡The oscillation amplitudes and period reported in Tables III and IV for Johnston (No. 25) were collected prior to
the First MIT meeting. This data was computed using a discrete Fourier transform, and corresponds to the results
by Johnston and Krasny in Table III of their paper in this special issue.
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Table IV. Contributor-supplied vorticity and stream function at time-history point-1
and average velocity and vorticity.

Corresponding
No. author �  ′ �! !′ �̂u û′ �̂! !̂′

1 Comini-I −7:120e-2 1.160e-2 −2:0208 1.8490 0.2411 3.800e-5 3.0122 4.200e-3
3 Comini-III −7:170e-2 1.140e-2 −1:9914 1.9092 0.2425 4.000e-5 3.0162 4.000e-3
5 Croce −7:077e-2 1.026e-2 −2:1480 1.6160 0.2373 5.700e-5 2.9830 4.640e-3
6 Westerberg −7:357e-2 7.366e-3 −2:3370 1.1510 0.2396 3.590e-5 3.0170 3.353e-3
13 Christon-I −7:405e-2 6.482e-3 −2:3200 0.9866 0.2398 3.500e-5 3.0160 3.160e-3
14 Christon-II −7:313e-2 8.228e-3 −2:1950 1.2684 0.2388 7.200e-5 3.0060 3.780e-3
15 Christon-III −7:394e-2 7.106e-3 −2:1213 0.9710 0.2403 7.000e-5
16 Bruneau −5:955e-2 7.895e-3 −2:1640 1.5830 0.2394 4.200e-5 2.7020 3.273e-3
18 Paolucci −7:372e-2 6.990e-3 −2:3722 1.0750 0.2395 3.460e-5 3.0171 3.190e-3
19 Pan −7:274e-2 8.387e-3 −2:2604 1.3257 0.2394 3.916e-5 3.0387 3.644e-3
20 Christopher −7:370e-2 5.740e-3 −2:3708 0.9056 0.2393 3.100e-5 3.0340 2.900e-3
21 Davis 0.2395 3.300e-5
22 Gresho-I −7:450e-2 7.120e-3 −2:4144 1.0776 0.2397 3.460e-5 3.0075 3.220e-3
23 Gresho-II −7:444e-2 7.080e-3 −2:4498 1.0816 0.2397 3.420e-5 3.0179 3.220e-3
24 Gresho-III −7:439e-2 7.100e-3 −2:4455 1.0810 0.2397 3.400e-5 3.0179 3.220e-3
25 Johnston −7:348e-2 6.856e-3 −2:3620 0.9940 0.2389 3.366e-5 3.0090 3.216e-3
26 Parolini −7:359e-2 7.313e-3 −2:3548 1.1314 0.2396 3.467e-5 3.0169 3.300e-3
28 Guo −7:385e-2 6.768e-3 −2:4334 1.0570 0.2395 3.278e-5 3.0172 3.116e-3
29 Dunn −2:3600 1.1310 0.2400 4.610e-5 3.0200 3.310e-3

Minimum −7:450e-2 5.740e-3 −2:4498 0.9056 0.2373 3.100e-5 2.7020 3.000e-3
Maximum −5:955e-2 1.160e-2 −1:9914 1.9092 0.2425 7.200e-5 3.0387 4.640e-3
Mean value −7:249e-2 7.864e-3 −2:2845 1.2325 0.2397 4.093e-5 2.9998 3.488e-3

Standard deviation 3.412e-3 1.675e-3 0.1439 0.3036 9.979e-4 1.216e-5 0.0774 4.266e-4

the stream function, vorticity, and global velocity and vorticity metrics were not reported
consistently by all contributors at the MIT meeting. Therefore, these quantities are not included
in subsequent comparisons. However, the minimum, maximum, mean and standard deviation
for each quantity are reported in Table IV.
In order to account for variations in computational resources, algorithms and implementation

details, a series of data that includes the computational ‘grind-time’, the number of time-steps
per period, the specFP95 rating, and memory usage were requested as compulsory data. This
data is presented in Table V. The grind-time is reported in milliseconds per node (grid-
point) per time step with the concomitant number of time-steps per period of oscillation. As
mentioned earlier, for the spectral methods, the number of modes were used rather than nodes
in the calculation of the grind time. The contributions by Ingber (No. 17) and Dunn (No. 29)
were performed in parallel, so the timing data for both are normalized on a total processor-time
basis for comparison to the serial timing data provided by the other contributors.

5.2. Data comparison

As a baseline for comparison, we chose the contributed solution provided by Xin and Le
Qu�er�e as our ‘truth’ solution. This choice was based, in part, on the high convergence rate
of the Chebyshev pseudo-spectral method which depends only on solution regularity, and
in part on our ‘special’ request to them to provide a benchmark solution. In addition, the
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Table VI. Calculated percentage di�erences and ranking (N) for each time-history value based on
Xin and Le Qu�er�e’s (No. 31) results.

No. Corresponding author �
u1 N 
′u1 N �
�1 N 
′�1 N

1 Comini-I 6.1111 22 35.9524 23 −0:0151 7 33.1774 24
2 Comini-II 3.6979 16 25.0456 22 −0:0038 1 23.6781 23
3 Comini-III 14.9833 29 73.2691 29 0.0829 10 70.3323 29
4 Comini-IV 0.3739 6 2.2795 9 −0:1098 12 −1:4268 7
5 Croce 6.9629 23 46.4215 25 0.2335 16 46.1862 26
6 Westerberg 0.4862 8 6.2231 15 0.0075 3 5.4282 14
7 Ambrosini 7.8856 25 45.9108 24 3.5860 29 16.9864 19
8 Kim −4:1806 18 −99:1245 30 −0:1808 14 −99:3917 30
9 Turek 1.4976 13 3.0495 11 −0:2938 21 3.4160 10
10 Chan-I 9.0567 27 46.9687 26 −0:2787 19 42.6299 25
11 Chan-II 5.2062 20 51.5649 28 −0:2486 17 48.7599 28
12 Chan-III 4.7626 19 50.4706 27 −0:2787 20 47.3561 27
13 Christon-I 8.4534 26 −7:3831 16 0.3089 23 −7:1128 17
14 Christon-II 15.9947 30 17.3123 18 0.6102 25 17.0800 20
15 Christon-III 4.1060 17 0.5326 1 −0:5047 24 −0:7487 2
16 Bruneau 5.8095 21 20.6683 21 1.1376 28 20.2153 22
17 Ingber 14.4155 28 20.5588 19 0.9492 27 6.5044 16
18 Paolucci 0.1721 3 5.2528 14 0.8750 26 −5:7557 15
19 Pan 2.0654 15 20.5953 20 0.2486 18 19.51334 21
20 Christopher −0:9866 11 −10:2648 17 0.0075 4 −10:1545 18
21 Davis −0:0994 2 1.1454 4 0.0075 5 −1:2635 5
22 Gresho-I 1.0185 12 1.4792 6 −0:1262 13 1.3903 6
23 Gresho-II 0.5217 9 1.1892 5 −0:0038 2 0.8891 3
24 Gresho-III 0.2427 4 1.0695 3 0.0912 11 0.9462 4
25 Johnston −0:3478 5 −0:5618 2 −0:2938 22 −0:1404 1
26 Parolini 0.6104 10 −2:1668 8 −0:0075 6 4.6795 12
27 Arm�eld 0.0426 1 −1:8385 7 0.0452 9 −1:7782 8
28 Guo −0:4543 7 −3:4435 12 −0:0301 8 −3:2756 9
29 Dunn 1.4976 14 4.8734 13 0.1959 15 5.2878 13
30 Matsumoto 7.70814 24 2.9255 10 −8:0383 30 −3:5096 11

senior corresponding author, Le Qu�er�e, has extensive experience with thermally driven natural
convection in enclosures—see for example References [2, 9, 10, 13]. However, it is arguable
that other solutions may be as accurate as those provided by Le Qu�er�e. For this reason, the
raw data are provided in Tables III and IV, and the reader may process his own comparison
based on these or other ‘truth’ solutions.
Table VI shows the calculated di�erences for the velocity and temperature at point-1 on a

percentage basis for each entry relative to the ‘truth’ solution provided by Le Qu�er�e (No. 31).
Here, �
 indicates the calculated percentage di�erence in the time-averaged values, and 
′

indicates the calculated percentage di�erence in the peak-to-valley oscillation amplitude. Each
tabulated result is ranked from the best with the smallest absolute value of the error, to the
worst, with the largest absolute value of the error, as indicated by the rank N. Most notable
here is the fact that the mean temperature based on Richardson extrapolation (No. 2) was
the most accurate. However, the other extrapolated results submitted by Comini et al. did
not fare as well. The precise cause for this has not been explored at this time. The mean
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Table VII. Calculated percentage di�erences and ranking (N) for each time-history value based on
Xin and Le Qu�er�e’s (No. 31) results.

Corresponding
No. author �
Nu N 
′Nu N �
�P14 N 
′�P14 N 
��1 N

1 Comini-I −0:0210 14 33.5211 24 6.2162 9 31.0108 18 0.6156 21
2 Comini-II −0:0231 15 23.6338 22 7.8919 11 24.0432 16 0.4456 17
3 Comini-III 0.1210 21 63.3803 28 0.2492 8
4 Comini-V 0.0640 18 −0:2986 2 0.0293 2
5 Croce 0.0052 5 33.2394 23 79.2973 23 35.2306 22 0.8354 22
6 Westerberg 0.1646 22 7.0423 16 −2:1622 6 6.9676 11 −0:0440 5
7 Ambrosini −51:5676 20 32.4828 19 1.7148 25
8 Kim 99.6960 29 −99:2958 29 48.0287 30
9 Turek −0:0079 6 −1:4084 5 8.1081 12 2.5515 8 0.3078 11
10 Chan-I 0.0144 12 47.3239 27 −9:1892 14 37.0952 23 2.5942 28
11 Chan-II 0.7106 25 47.0423 26 −1:0811 5 34.9362 21 0.4543 18
12 Chan-III 0.7171 26 46.1972 25 −0:5405 2 34.1511 20 0.4543 19
13 Christon-I −0:0100 7 −5:3521 14 25.8378 18 −7:1933 12 1.0406 24
14 Christon-II −0:2284 23 18.4507 20 66.0541 21 18.3513 15 1.7441 26
15 Christon-III 0.0166 13 0.0000 1 3.6544 29
16 Bruneau 0.0118 9 19.0141 21 −7:2432 10 16.5849 13 −0:1847 7
17 Ingber −2:1937 28 1.5211 7 −0:3078 12
18 Paolucci −0:0009 1 −0:7042 4 0.0355 4
19 Pan −0:0035 4 17.7183 19 −0:5405 3 17.4681 14 0.3664 14
20 Christopher 0.0642 19 −9:8592 17 193.5135 24 −29:4406 17 0.2492 9
21 Davis 0.0031 3 −1:4084 6 −2:7027 7 −0:8832 1 0.0147 1
22 Gresho-I 0.0576 16 2.2535 10 26.6324 19 0.9323 2 0.4807 20
23 Gresho-II 0.0664 20 1.6901 8 18.3784 16 1.4720 3 0.4221 15
24 Gresho-III 0.0576 17 1.6901 9 9.7297 15 1.4720 4 0.4221 16
25 Johnston −0:2721 24 0.4225 3 −25:6757 17 −1:6683 6 0.3078 13
26 Parolini 0.0009 2 4.7887 13 −0:5405 4 4.0236 9 −0:1378 6
27 Arm�eld 0.0118 10 −2:8169 11 0.2703 1 −1:5702 5 0.0293 3
28 Guo −0:0100 8 −2:9577 12 8.2487 13 −1:7076 7 0.2492 10
29 Dunn 0.0118 11 5.9155 15 5.3514 8 5.4956 10 0.8354 23
30 Matsumoto 2.0077 27 −10:4507 18 −69:2432 22 55.9372 24 −1:9083 27

velocity result computed on a highly re�ned grid by Arm�eld (No. 27) was the most accurate,
while the fourth-order FDM results provided by Johnston (No. 25) yielded the most accurate
velocity and temperature oscillation amplitudes.
Table VII shows the calculated percentage di�erences in the average and amplitude of

�uctuation for the Nusselt number, pressure di�erence, �P14 and period. Again, each result is
ranked from the best to the worst as indicated by the rank N, where the rank is based on the
absolute value of the error. The most accurate time-averaged Nusselt number was reported
by Paolucci (No. 1), while Christon (No. 15) reported the best oscillation amplitude. The
best mean pressure di�erence was reported by Arm�eld (No. 27). The results provided by
Davis (No. 21) were computed using the Q2 − Q1 element and yielded the most accurate
peak-to-valley oscillation amplitude in the pressure di�erence, and the most accurate period
of oscillation albeit with 341 time-steps per period.
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The results presented in Tables VI and VII are naturally segregated into two primary
groups based on the calculated di�erences. In the case of the mean velocity and velocity
oscillation amplitude, there is a demarcation at 5% in each. In contrast, approximately half
of the contributed solutions provided mean temperature results that fell in the category of
�
�160:2%, while the di�erences in the mean Nusselt number were below 1%. The errors in
the temperature and Nusselt number oscillation amplitude also naturally segregated into two
primary groups with about 12 of the contributions yielding 
�′165% and 
Nu′65%. Perhaps
not too surprisingly, the di�erences associated with the time-averaged pressure were not as
good with a mean error of 26% and a maximum error of nearly 200% reported by Christopher
(No. 20).
From the calculated and ranked di�erences, it is clear that the time-averaged velocity,

temperature and Nusselt number were relatively ‘easy’ to calculate. This is reinforced by the
mean di�erences for the time-averaged quantities shown in Tables VI and VII. In contrast, the
oscillation amplitudes appear to re�ect a larger component of error in all of the contributed
solutions. This may be due to the fact that both spatial and temporal errors are re�ected in
the oscillation amplitudes. Overall, the largest errors in the oscillation amplitudes were for the
results computed by Kim (No. 8) which failed to obtain a single-frequency time-dependent
solution at Ra=3:4×105.
The raw data presented in Tables III–VII may be used to develop representative compos-

ite metrics based on the speci�c application of interest. We developed our own series of
composite error metrics in order to perhaps obtain a somewhat more representative over-
all picture of the errors associated with the contributed solutions. These metrics are shown
in Table VIII and consist of the average of the errors in the time-averaged velocity and
temperature

|�
u1 |+ |�
�1 |
2

(23)

the RMS (root mean square) of the time-averaged errors√
�
2u1 + �


2
�1

2
(24)

the average of the errors in the velocity and temperature oscillation amplitude

|
′u1 |+ |
′�1 |
2

(25)

and the RMS of the errors in the oscillation amplitude√
[
′u1 ]

2 + [
′�1 ]
2

2
(26)

The results in Table VIII are ranked from the smallest to the largest. We note that the
rank order for the mean values and for the oscillation amplitudes are roughly independent
of the speci�c norm used—in e�ect, a norm equivalence. Surprisingly, there is no clear
distinction based on accuracy between the methods, i.e. �nite element, �nite volume, �nite
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Table VIII. Composite metrics and rank based on the velocity and temperature time-history data.

(|�
u1 |+ |�
�1 |)=2
√
(�
2u1 + �


2
�1
)=2 (|
′u1 |+ |
′�1 |)=2

√
([
′u1 ]2 + [


′
�1
]2)=2

Corresponding
No. author Value (%) N Value (%) N Value (%) N Value (%) N

1 Comini-I 3.0631 21 4.3212 22 34.5649 24 34.5927 23
2 Comini-II 1.8508 16 2.6148 16 24.3618 22 24.3714 22
3 Comini-III 7.5331 27 10.5950 29 71.8007 29 71.8157 29
4 Comini-IV 0.2418 4 0.2755 4 1.8531 8 1.9015 8
5 Croce 3.5982 23 4.9263 23 46.3039 26 46.3040 26
6 Westerberg 0.2469 6 0.3438 7 5.8256 15 5.8392 15
7 Ambrosini 5.7358 26 6.1254 25 31.4486 23 34.6146 24
8 Kim 2.1807 17 2.9589 18 99.2581 30 99.2582 30
9 Turek 0.8957 14 1.0792 14 3.2328 10 3.2380 10
10 Chan-I 4.6677 25 6.4071 26 44.7993 25 44.8518 25
11 Chan-II 2.7274 20 3.6855 20 50.1624 28 50.1820 28
12 Chan-III 2.5207 19 3.3734 19 48.9133 27 48.9381 27
13 Christon-I 4.3811 24 5.9814 24 7.2479 16 7.2492 16
14 Christon-II 8.3025 30 11.3182 30 17.1962 19 17.1966 19
15 Christon-III 2.3054 18 2.9253 17 0.6406 2 0.6497 2
16 Bruneau 3.4735 22 4.1859 21 20.4418 21 20.4430 21
17 Ingber 7.6824 28 10.2154 28 13.5316 18 15.2475 18
18 Paolucci 0.5236 11 0.6306 10 5.5043 14 5.5100 14
19 Pan 1.1570 15 1.4710 15 20.0543 20 20.0616 20
20 Christopher 0.4971 10 0.6976 11 10.2096 17 10.2098 17
21 Davis 0.0535 2 0.0705 2 1.2044 5 1.2059 5
22 Gresho-I 0.5724 12 0.7257 12 1.4347 6 1.4354 6
23 Gresho-II 0.2627 7 0.3689 8 1.0391 4 1.0499 4
24 Gresho-III 0.1669 3 0.1833 3 1.0079 3 1.0097 3
25 Johnston 0.3208 9 0.3219 6 0.3511 1 0.4094 1
26 Parolini 0.3090 8 0.4317 9 3.4231 12 3.6464 12
27 Arm�eld 0.0439 1 0.0439 1 1.8083 7 1.8086 7
28 Guo 0.2422 5 0.3219 5 3.3596 11 3.3606 11
29 Dunn 0.8467 13 1.0680 13 5.0806 13 5.0848 13
30 Matsumoto 7.8732 29 7.8749 27 3.2176 9 3.2308 9

di�erence, fully coupled or segregated. Again, the computations by Arm�eld (No. 27) have
the smallest errors in the time-averaged velocity–temperature metrics, while the contribution
by Johnston (No. 25) has the smallest errors in the velocity–temperature oscillation amplitude
metrics.
A summary of the minimum and maximum absolute value in the computed errors presented

in Table IX along with the mean value and standard deviation for each. Here, the most
accurate and least accurate results in an absolute sense are reported without regard for the
computational cost. Again, the fact that the mean values of temperature and velocity were
relatively easy to compute while the pressure and �uctuating components were more prone to
errors is re�ected in the mean error values.
Three overall accuracy metrics were constructed and the results for each contributor are

shown in ‘rank-order’ in Table X. These metrics re�ect only the accuracy of the contributed

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:953–980



972 M. A. CHRISTON, P. M. GRESHO AND S. B. SUTTON

Table IX. Summary of minimum and maximum absolute values of error metrics for all and
performance metrics for all contributed solutions.

Minimum Maximum

Corresponding Metric Corresponding Metric Mean Standard
Metric No. author value No. author value value deviation

�
u1 27 Arm�eld 0.0426 14 Christon-II 15.9947 4.3326 4.6668


′u1 15 Christon-III 0.5326 8 Kim 99.1245 21.0003 24.8253
�
�1 2 Comini-II 0.0038 30 Matsumoto 8.0383 0.6267 1.5275


′�1 25 Johnston 0.1404 8 Kim 99.3917 18.3005 23.6178
1
2 (|�
u1 |+ |�
�1 |) 27 Arm�eld 0.0439 14 Christon-II 8.3025 2.4158 2.6223√

1
2 ([�
u1 ]

2 + [�
�1 ]2) 27 Arm�eld 0.0439 14 Christon-II 11.3182 3.1041 3.3662
1
2 (|
′u1 |+ |
′�1 |) 25 Johnston 0.3511 8 Kim 99.2581 19.3128 23.9843√

1
2 ([


′
u1 ]2 + [


′
�1
]2) 25 Johnston 0.4094 8 Kim 99.2582 19.4938 24.0288

�
�P14 27 Arm�eld 0.2703 20 Christopher 193.5135 26.0840 41.8860

′�P14 21 Davis 0.8832 30 Matsumoto 55.9372 16.7779 15.7097
�
Nu 18 Paolucci 0.0009 8 Kim 99.6960 3.6749 18.1542

′Nu 15 Christon-III 0.0000 8 Kim 99.2958 17.5654 23.2644

��1 21 Davis 0.0147 8 Kim 48.0287 2.2721 8.5368
�AT 25 Johnston 1.0000 17 Ingber 2010.1368 115.0350 388.2903
�MCPU 16 Bruneau 1.0000 20 Christopher 2289.6680 190.4220 503.1299

results regardless of the grid resolution or computational cost. The �rst metric

E1=
(�
Nu + �
u1 + �
�1)

3
(27)

consists of an average of mean di�erences in the Nusselt number, x-velocity and temperature.
The second overall metric

E2=
(
��1 + 
′Nu + 
′u1 + 
′�1)

4
(28)

is the average of the period and amplitude errors. The third overall metric, E3, is the average
of the errors computed in the period, mean velocity, temperature and Nusselt number, and
the corresponding error in the oscillation amplitudes

E3=
(�
Nu + �
u1 + �
�1 + 
��1 + 
′Nu + 
′u1 + 
′�1)

7
(29)

The inclusion of the oscillation period error in metrics E2 and E3 results in a slightly dif-
ferent ranking as well as larger errors relative to E1. However, there is again essentially a
‘norm equivalence’ between the overall metrics 2 and 3. There is an overall segregation of
the contributed solutions into two primary groups—roughly speaking, it is those in the top
15 and those in the bottom 15. In the case of the E1 metric, the bottom 14 results corre-
spond to E1¿1:0%, and for E3, the bottom 14 are identi�ed by E3¿5:0%. In terms of E2,
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Table X. Overall rankings based on error metrics presented in rank-order for metrics E1–E3.

Overall metric E1 Overall metric E2 Overall metric E3

Rank Corresponding Metric Corresponding Metric Corresponding Metric
Order N No. author value No. author value No. author value

1 27 Arm�eld 0.0332 25 Johnston 0.3581 25 Johnston 0.3352
2 21 Davis 0.0367 21 Davis 0.9580 21 Davis 0.5631
3 24 Gresho-III 0.1305 4 Comini-IV 1.0085 24 Gresho-III 0.6456
4 28 Guo 0.1648 24 Gresho-III 1.0320 4 Comini-IV 0.6545
5 4 Comini-IV 0.1826 23 Gresho-II 1.0476 23 Gresho-II 0.6832
6 23 Gresho-II 0.1973 15 Christon-III 1.2339 27 Arm�eld 0.9375
7 26 Parolini 0.2063 15 Gresho-I 1.4009 22 Gresho-I 0.9723
8 6 Westerberg 0.2195 27 Arm�eld 1.6157 15 Christon-III 1.3662
9 25 Johnston 0.3046 9 Turek 2.0454 9 Turek 1.4259
10 18 Paolucci 0.3493 28 Guo 2.4815 28 Guo 1.4886
11 20 Christopher 0.3528 18 Paolucci 2.9371 26 Parolini 1.7702
12 22 Gresho-I 0.4008 26 Parolini 2.9432 18 Paolucci 1.8280
13 29 Dunn 0.5684 29 Dunn 4.2280 29 Dunn 2.6596
14 9 Turek 0.5998 6 Westerberg 4.6844 6 Westerberg 2.7708
15 19 Pan 0.7725 30 Matsumoto 4.6985 13 Christon-I 4.2373
16 2 Comini-II 1.2416 13 Christon-I 5.2221 20 Christopher 4.5123
17 15 Christon-III 1.5425 17 Ingber 7.2231 30 Matsumoto 5.2212
18 12 Chan-III 1.9195 20 Christopher 7.6319 17 Ingber 6.6358
19 1 Comini-I 2.0491 14 Christon-II 13.6468 19 Pan 8.6444
20 11 Chan-II 2.0551 19 Pan 14.5483 16 Bruneau 9.5773
21 16 Bruneau 2.3196 16 Bruneau 15.0206 14 Christon-II 10.2029
22 5 Croce 2.4005 2 Comini-II 18.2008 2 Comini-II 10.9325
23 13 Christon-I 2.9241 7 Ambrosini 21.5374 7 Ambrosini 15.2167
24 10 Chan-I 3.1166 1 Comini-I 25.8166 1 Comini-I 15.6305
25 3 Comini-III 5.0624 5 Croce 31.6707 5 Croce 19.1263
26 14 Christon-II 5.6111 10 Chan-I 34.8792 10 Chan-I 21.2666
27 7 Ambrosini 5.7358 12 Chan-III 36.1196 12 Chan-III 21.4624
28 17 Ingber 5.8528 11 Chan-II 36.9554 11 Chan-II 21.9981
29 30 Matsumoto 5.9180 3 Comini-III 51.8077 3 Comini-III 31.7740
30 8 Kim 34.6858 8 Kim 86.4602 8 Kim 64.2712

the demarcation point is E2¿5:0% with 14 of the contributed solutions falling in this
category.
The results in Tables VI–X provide an indication of best accuracy, but they do not re�ect

the computational cost required to obtain the solution. In order to account for di�erences
in algorithms, computing resources, and implementation, a normalized algorithm timing and
a memory footprint metric were developed based on the contributor-supplied performance
data. The normalized algorithm timing is based on the data reported in Table V and is
de�ned as

�AT=
[

msec
node · step · steps

period

]
· specFP95 (30)
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Table XI. Normalized algorithm timing and memory-CPU metrics.

No. Corresponding author �AT N �MCPU N

1 Comini-I 19.02 11 49.80 9
3 Comini-III 20.17 12 52.81 10
5 Croce 20.98 13 24.05 6
6 Westerberg 8.83 7
9 Turek 9.10 8
10 Chan-I 12.77 9 63.19 12
13 Christon-I 3.78 6 27.04 7
14 Christon-II 1.31 2 10.87 3
15 Christon-III 1.35 3 11.16 5
16 Bruneau 3.40 5 1.00 1
17 Ingber 2010.14 25
18 Paolucci 13.13 10 136.26 17
19 Pan 27.49 14 10.91 4
20 Christopher 63.43 18 2289.67 19
21 Davis 85.73 22 419.01 18
22 Gresho-I 38.33 15 39.78 8
23 Gresho-II 46.67 16 60.64 11
24 Gresho-III 75.92 20 99.23 14
25 Johnston 1.00 1 1.19 2
26 Parolini 71.53 19 76.88 13
27 Arm�eld 85.14 21 118.04 15
28 Guo 49.19 17
29 Dunn 114.95 24
30 Matsumoto 2.34 4
31 LeQu�er�e 90.17 23 126.50 16

The normalized memory-CPU metric is de�ned as

�MCPU=
[

msec
node · step · steps

period

]
·Memory (31)

where Memory is reported in MegaBytes (MB).
Both of the normalized performance metrics are scaled in a relative sense so that the min-

imum �AT and minimum �MCPU are unity. The normalized performance metrics are presented
in Table XI along with a ranking from best to worst in terms of the normalized CPU and
memory-CPU metrics. It is not surprising that the segregated methods tend to have smaller
normalized CPU and memory-CPU metrics. It is worth nothing that the unstructured-grid �nite
element methods reported by Christon (Nos. 14 and 15) are ranked a close second (semi-
implicit) and third (fully implicit) to the fourth-order �nite-di�erence method of Johnston’s
�nite-di�erence method in terms of the normalized algorithm timing.
The most e�cient and least e�cient computations are re�ected in a relative sense in

Table XI by the normalized memory-CPU metric, �MCPU, and the normalized algorithm tim-
ing, �AT values. The fourth-order stream function—vorticity method of Johnston (No. 25) has
the best grind-time, while the comparable stream function—vorticity �nite element solution
of Ingber (No. 17) was about 2000 times more expensive to compute. The �nite di�erence
method of Bruneau (No. 16) had the smallest memory-CPU metric, while the fully coupled
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�nite element solution provided by Christopher (No. 20) required a memory-CPU integral
nearly 2300 times greater.
In order to account for accuracy and the computational cost, three additional overall metrics

were constructed using the normalized algorithm timing and the grid resolution. These metrics
are shown in Table XII for each contributor and consist of a resolution weighted metric

E4=E3 · (No: of nodes) (32)

the overall error metric, E3, weighted by the normalized algorithm timing

E5=E3 · �AT (33)

and the overall error metric, E3, weighted by the normalized algorithm timing and resolution,

E6=E3 · �AT · (No: of nodes) (34)

Again, the No. of nodes was adjusted to re�ect the actual computational cost of the spectral
methods submitted by Paolucci (No. 18), Parolini (No. 26), and Le Q�er�e (No. 31) based on
the actual degrees of freedom computed.
The overall metrics, E4–E6 shown in Table XII are presented in ‘rank-order’ according

to the ranking, N, for each metric. These metrics re�ect both the accuracy and the com-
putational cost required to achieve the solution. Surprisingly, the fully implicit second-order
FEM projection method used by Christon (No. 15) appears to provide the best overall bal-
ance between computational cost and accuracy followed closely by the fourth-order method
of Johnston (No. 25) and the Petrov–Galerkin method of Paolucci (No. 18). Matsumoto (No.
30) used P1−P1 triangular elements to achieve good algorithm performance as re�ected by
the ranking in metrics E5 and E6. The only methods using higher-order �nite elements that are
ranked at least once in the top �ve are those used by Davis (No. 21) for the E4 metric and
Westerberg (No. 6) for the E6 metric. Interestingly, both were performed using a relatively
unpopular �nite element: Q2−Q1; see Reference [11]. Also interesting is the di�erence in the
number of time-steps per oscillation period used: whereas Davis used 341 steps per period,
Westerberg, who was not far behind in the overall rankings, used only 16 steps per period
(see Table V). Otherwise, there is no clear distinction between the overall performance of
the �nite element, �nite di�erence and �nite volume methods applied to the thermally driven
cavity problem.

5.3. The critical Rayleigh number

Several contributors provided estimates of the critical Rayleigh number, above which the
�ow is unsteady. First, the contribution by Parolini and Auteri (No. 26) used their Galerkin–
Legendre projection method to bound the �rst Hopf bifurcation in the range of 3:075×1056
Racrit63:125×105. Bruneau and Saad (No. 16) computed the �rst Lyapunov exponent and
estimated the critical Rayleigh number as Racrit =2:9×105. Using a grid resolution of 181 ×
801, they obtained unsteady results at Ra=3:0×105 with a oscillation period of 3:7. Finally,
both Salinger (No. 32) and Le Qu�er�e (No. 31) computed the �rst and second bifurcation
points. Their computation of the �rst and second critical Rayleigh numbers are shown in
Table XIII with the period of oscillation.
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Table XIII. Critical Rayleigh numbers for the �rst and second bifurcation points.

First Second

Author No. Racrit Period Racrit Period Mesh resolution

Le Qu�er�e 31 306191.6 3.6763464 311169.8 3.4242277 40×140
Salinger 32 306450 3.6759 311480 N=A 257×689

6. SUMMARY AND CONCLUSIONS

The primary objectives for this endeavor were to determine the most accurate estimate of
the critical Rayleigh number above which the �ow is unsteady, identify the correct, i.e. best
time-dependent benchmark solution for the 8:1 di�erentially heated cavity, and identify those
methods that can reliably provide these results. The �rst critical Rayleigh number provided in
the ‘truth’ solution by Xin and Le Qu�er�e marks the transition from steady to a time-dependent
�ow at Racrit =3:0619×105, while the second critical Rayleigh number marks the transition to
a time-dependent skew-symmetric �ow at Racrit =3:1117×105. This has been further veri�ed
by the GLS=FEM results provided by Salinger et al. (No. 32)—albeit using a factor of 32
more grid resolution.
Unfortunately, the identi�cation of the ‘best’ time-dependent solution was less clear cut. As

mentioned earlier, our choice for a ‘truth’ solution was that of Xin and Le Qu�er�e, although it
is clear that other equivalent baseline solutions could be used. While it was initially thought
that there would be a clear distinction between fully coupled and segregated solution meth-
ods, when the cost of obtaining solutions is accounted for, there seems to be no such clear
distinction. However, if we were tasked with selecting an ‘overall’ ‘best’ contributed solution
based on accuracy (and, thankfully, we were not!), it would probably be that of Davis and
B�ansch (No. 21). Their rankings were consistently high for both the computed errors (Tables
VI and VII) and in the composite metrics in Table VIII. Their average ranking for these
error metrics was about 3.7, and they were ranked 2nd in all of the overall accuracy metrics
(E1 − E3) in Table X.
In contrast to the results found by de Vahl Davis [14], there seems to be no clear indicator

that the FEM �ow solvers are more accurate than their FDM or FVM counterparts. This is
perhaps di�cult to assess because the contributed solutions were predominantly �nite element
based while the �nite di�erence and �nite volume method were somewhat under-represented.
However, the answer to the question as to which methods can reliably deliver accurate solu-
tions to the 8:1 thermally driven cavity is that there is more than one. It was encouraging,
if somewhat surprising, that most of the results were relatively consistent with only a few
‘poor’ results. While most contributors did not demonstrate grid or time-step convergence,
most of the results were relatively consistent with only a few extremely poor results. Those
methods that achieved calculated di�erences of less than 5% in the oscillation amplitudes for
the velocity, temperature and Nusselt number relative to Le Qu�er�e’s solution are all reasonable
choices for attacking this class of �ow problem, and with appropriate care given to details
will yield acceptable results with a variety of methods.
As to the use of higher-order �nite element methods, the low-order Q1−Q0 element did very

well with respect to higher-order elements. (This element provides a spatial discretization that
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is the closest to many popular �nite-volume methods.) In addition, the Q2−Q−1 element fared
slightly better than the Q2−P−1. Most surprising, though, were the good results obtained with
the ‘old’ Taylor–Hood element, Q2 − Q1. However, in terms of the combined accuracy-cost
metrics, the higher-order elements did not perform better than their low-order counterparts.
Finally, given the rather wide range in the grid resolution (about a factor of 7), and the

very large range of time step sizes (about a factor of 200), it is problematic to directly
compare di�erent contributions to the ‘truth’ solution—particularly since a convergent method
will deliver a more accurate solution on a re�ned grid. In order to account for this possibility,
our composite error metrics were constructed based on the mesh resolution and computational
resources required to deliver the solutions (see E4−E6 in Table XII). Although these metrics
attempt to place the contributed solutions on an equal footing, it is up to the CFD practitioner
to decide the appropriate balance between computational e�ciency and accuracy.
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